
Confidential

SMART CONTRACT AUDIT REPORT

for

HAKKA FINANCE

Prepared By: Shuxiao Wang

Hangzhou, China
September 10, 2020

1/28 PeckShield Audit Report #: 2020-40

sxwang@peckshield.com

Confidential

Document Properties

Client Hakka Finance
Title Smart Contract Audit Report
Target 3FMutual
Version 1.0
Author Xuxian Jiang
Auditors Huaguo Shi, Xuxian Jiang
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Confidential

Version Info

Version Date Author(s) Description
1.0 September 10, 2020 Xuxian Jiang Final Release
0.2 September 3, 2020 Xuxian Jiang Additional Findings
0.1 September 2, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/28 PeckShield Audit Report #: 2020-40

Confidential

Contents

1 Introduction 5
1.1 About 3FMutual . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 8

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Possible Integer Overflow in sqrt() . 12
3.2 Better Handling of Ownership Transfers . 13
3.3 Proper Asset Returns After Global Settlement . 15
3.4 Unhandled Dust in distributeEx() . 16
3.5 Removal of Expired Insurance Units . 18
3.6 Other Suggestions . 19

4 Conclusion 21

5 Appendix 22
5.1 Basic Coding Bugs . 22

5.1.1 Constructor Mismatch . 22
5.1.2 Ownership Takeover . 22
5.1.3 Redundant Fallback Function . 22
5.1.4 Overflows & Underflows . 22
5.1.5 Reentrancy . 23
5.1.6 Money-Giving Bug . 23
5.1.7 Blackhole . 23
5.1.8 Unauthorized Self-Destruct . 23

3/28 PeckShield Audit Report #: 2020-40

Confidential

5.1.9 Revert DoS . 23
5.1.10 Unchecked External Call . 24
5.1.11 Gasless Send . 24
5.1.12 Send Instead Of Transfer . 24
5.1.13 Costly Loop . 24
5.1.14 (Unsafe) Use Of Untrusted Libraries . 24
5.1.15 (Unsafe) Use Of Predictable Variables . 25
5.1.16 Transaction Ordering Dependence . 25
5.1.17 Deprecated Uses . 25

5.2 Semantic Consistency Checks . 25
5.3 Additional Recommendations . 25

5.3.1 Avoid Use of Variadic Byte Array . 25
5.3.2 Make Visibility Level Explicit . 26
5.3.3 Make Type Inference Explicit . 26
5.3.4 Adhere To Function Declaration Strictly . 26

References 27

4/28 PeckShield Audit Report #: 2020-40

Confidential

1 | Introduction

Given the opportunity to review the 3FMutual design document and related smart contract source
code, we in the report outline our systematic approach to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistencies between smart contract code
and design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About 3FMutual

Third Floor Mutual (3FMutual) is an insurance agreement that runs on blockchain and aims to provide
a hedging mechanism relative to DeFi products, such as MakerDAO. In other words, it functions as
a rainy day fund like mechanism which helps you to hedge against collapse risk of chosen DeFi
protocols. However, it is neither an option nor a short position of ETH/DAI/MKR. The rainy day fund
like design means it’s more like collective insurance. It certainly recognizes the rising value of assets
locked in DeFi. In the meantime, it also exposes the fragile side from DeFi-related attacks/risks.
In essence, the proposition of 3FMutual allows DeFi users to hedge these risks with a collective
insurance.

The basic information of 3FMutual is as follows:

Table 1.1: Basic Information of 3FMutual

Item Description
Issuer Hakka Finance

Website https://hakka.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report September 10, 2020

5/28 PeckShield Audit Report #: 2020-40

Confidential

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/artistic709/3FMutual_audit (4fd6c5f)

1.2 About PeckShield

PeckShield Inc. [18] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [13]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

6/28 PeckShield Audit Report #: 2020-40

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Confidential

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/28 PeckShield Audit Report #: 2020-40

Confidential

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [12], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as an investment advice.

8/28 PeckShield Audit Report #: 2020-40

Confidential

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/28 PeckShield Audit Report #: 2020-40

Confidential

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the 3FMutual implementation. During the first
phase of our audit, we studied the smart contract source code and ran our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/28 PeckShield Audit Report #: 2020-40

Confidential

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 3 low-severity vulnerabilities, and 1 informational recommendation.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Low Possible Integer Overflow in sqrt() Numeric Errors Confirmed
PVE-002 Low Better Handling of Ownership Transfers Security Features Fixed
PVE-003 Medium Proper Asset Returns After Global Settlement Business Logics Fixed
PVE-004 Low Unhandled Dust in distributeEx() Coding Practices Confirmed
PVE-005 Informational Removal of Expired Insurance Units Time and State Fixed

Please refer to Section 3 for details.

11/28 PeckShield Audit Report #: 2020-40

Confidential

3 | Detailed Results

3.1 Possible Integer Overflow in sqrt()

• ID: PVE-001

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: Underwriter/SafeMath

• Category: Numeric Errors [11]

• CWE subcategory: CWE-190 [2]

Description

In 3FMutual, depositing ETHs to buy the collective insurance requires the calculation of resulting
share, which necessitates the familiar sqrt() function in order to calculate the integer square root of
a given number. The sqrt() function, implemented in SafeMath, follows the Babylonian method for
calculating the integer square root. Specifically, for a given x, we need to find out the largest integer
z such that z2 <= x.

33 f unc t i on s q r t (uint256 x)
34 i n t e r n a l
35 pure
36 r e tu rn s (uint256 y)
37 {
38 uint256 z = ((add (x , 1)) / 2) ;
39 y = x ;
40 whi le (z < y)
41 {
42 y = z ;
43 z = ((add ((x / z) , z)) / 2) ;
44 }
45 }

Listing 3.1: underwriter.sol

The current sqrt() implementation is shown above. The initial value of z to the iteration
was given as z = ((add(x, 1))∕2), which results in an integer overflow when x = max_int256 =

12/28 PeckShield Audit Report #: 2020-40

Confidential

int256(2 ∗∗ 255 − 1). In other words, the overflow essentially sets z to zero, leading to a division

by zero in the calculation of z = ((add((x∕z), z))∕2) (line 77).
Note that this does not result in an incorrect return value from sqrt(), but does cause the function

to revert unnecessarily when the above corner case occurs. Meanwhile, it is worth mentioning that if
there is a divide by zero, the execution or the contract call will be thrown by executing the INVALID

opcode, which by design consumes all of the gas in the initiating call. This is different from REVERT

and has the undesirable result in causing unnecessary monetary loss.
To address this particular corner case, We suggest to change the initial value to z = add(x∕2, 1),

making sqrt() well defined over its all possible inputs.

Recommendation Revise the above calculation to avoid the unnecessary integer overflow.

33 f unc t i on s q r t (uint256 x)
34 i n t e r n a l
35 pure
36 r e tu rn s (uint256 y)
37 {
38 uint256 z = add (x >> 1 , 1) ;
39 y = x ;
40 whi le (z < y)
41 {
42 y = z ;
43 z = ((add ((x / z) , z)) / 2) ;
44 }
45 }

Listing 3.2: underwriter.sol

Status This issue has been confirmed. Considering the fact this contact has been deployed and
this cover case poses no real damage, the team decides to leave it as is for the time being.

3.2 Better Handling of Ownership Transfers

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: InsuranceImprovementProposalProxy
/Ownable

• Category: Security Features [7]

• CWE subcategory: CWE-282 [3]

Description

The Ownable smart contract implements a rather basic access control mechanism that allows a priv-
ileged account, i.e., owner, to be granted exclusive access to typically sensitive functions (e.g., the

13/28 PeckShield Audit Report #: 2020-40

Confidential

setting of certain risk parameters). Because of the owner-level access and the implications of these
sensitive functions, the owner account is critical for the 3FMutual security.

Within this contract, a specific function, i.e., transferOwnership(), allows for the ownership up-
date. However, current implementation achieves its goal within a single transaction. This is rea-
sonable under the assumption that the newOwner parameter is always correctly provided. However, in
the unlikely situation, when an incorrect newOwner is provided, the contract ownership may be forever
lost, which would be devastating for the entire system operation and maintenance.

As a common best practice, instead of achieving the owner update within a single transaction,
it is suggested to split the operation into two steps. The first step initiates the owner update intent
and the second step accepts and materializes the update. These two steps should be executed in two
separate transactions. By doing so, it can greatly alleviate the concern of accidentally transferring
the contract ownership to an uncontrolled address. In other words, this two-step procedure ensures
that an owner’s public key cannot be nominated unless there is an entity that has the corresponding
private key. This is explicitly designed to prevent unintentional errors in the owner transfer process.

17 f unc t i on t r a n s f e rOwne r s h i p (address newOwner) pub l i c onlyOwner {
18 r equ i r e (newOwner != address (0) , "invalid address") ;
19 emit Owne r sh i pTran s f e r r ed (owner , newOwner) ;
20 owner = newOwner ;
21 }

Listing 3.3: IIP . sol

Recommendation As suggested, the ownership transition can be better managed with a
two-step approach, such as, using these two functions: transferOwnership() and acceptOwnership().
Specifically, the changeOwner() function keeps the new address in the storage, _newOwner, instead of
modifying the _owner directly. The acceptOwner() function checks whether _newOwner is msg.sender

to ensure that _newOwner signs the transaction and verifies herself as the new owner. Only after the
successful verification, _newOwner would effectively become the _owner.

17 f unc t i on t r a n s f e rOwne r s h i p (address _newOwner) i n t e r n a l {
18 r equ i r e (_newOwner != address (0) , "Owner should not be 0 address") ;
19 r equ i r e (_newOwner != owner , "The current and new owner cannot be the same") ;
20 r equ i r e (_newOwner != newOwner , "Cannot set the candidate owner to the same

address") ;
21 newOwner = _newOwner ;
22 }

24 f unc t i on acceptOwnersh ip () pub l i c {
25 r equ i r e (msg . sender == newOwner , "msg.sender and _newOwner must be the same") ;
26 emit Owne r sh i pTran s f e r r ed (owner , newOwner) ;
27 owner = newOwner ;
28 newOwner = address (0) ;
29 }

Listing 3.4: IIP . sol (revised)

14/28 PeckShield Audit Report #: 2020-40

Confidential

Status This issue has been fixed by this commit: 0da1a7f1406e0397617b139c2ba93c14e9c31f7e.

3.3 Proper Asset Returns After Global Settlement

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: 3FMutual

• Category: Business Logics [10]

• CWE subcategory: CWE-841 [6]

Description

ThreeFMutual is the main contract that provides the collective insurance for users to hedge risks. In
particular, users can buy insurance via a number of buy() variants. One variant is the use of the
contract’s fallback function.

For elaboration, we show its code snippet below. We notice that the logic of returning funds after
the global settlement of MakerDAO, i.e., tick()== true, needs to be re-visited. Specifically, if there is a
global settlement of MakerDAO, any new fund transferred into 3FMutual needs to be properly returned
back. The current prototype assumes the sender is a contract wallet. However, the sender might an
EOA (Externally Owned Account) as well.

343 // contract wallets , sorry insurance only for human
344 f unc t i on buy ()
345 pub l i c
346 payable
347 {
348 // ticker
349 i f (t i c k ()) {
350 s endCont rac t (msg . sender , msg . va lue) ;
351 re tu rn ;
352 }

354 buyCore (msg . sender , msg . value , 0 , address (0)) ;
355 }

357 // fallback
358 f unc t i on () ex te rna l payable {
359 buy () ;
360 }

Listing 3.5: 3FMutual.sol

With that, we need to differentiate the sender type: if it is a contract wallet, we do not need to
change with the current sendContract() helper; if it is an EOA, we need to invoke another helper,

15/28 PeckShield Audit Report #: 2020-40

https://github.com/artistic709/3FMutual_audit/commit/0da1a7f1406e0397617b139c2ba93c14e9c31f7e

Confidential

i.e., sendHuman().

Recommendation Revise the above asset-returning logic as follows.

343 // contract wallets , sorry insurance only for human
344 f unc t i on buy ()
345 pub l i c
346 payable
347 {
348 // ticker
349 i f (t i c k ()) {
350 i f (msg . sender == tx . o r i g i n)
351 sendHuman (msg . sender , msg . va lue) ;
352 e l s e
353 s endCont rac t (msg . sender , msg . va lue) ;
354 re tu rn ;
355 }

357 buyCore (msg . sender , msg . value , 0 , address (0)) ;
358 }

360 // fallback
361 f unc t i on () ex te rna l payable {
362 buy () ;
363 }

Listing 3.6: 3FMutual.sol

Status This issue has been fixed by this commit: 0da1a7f1406e0397617b139c2ba93c14e9c31f7e.

3.4 Unhandled Dust in distributeEx()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: 3FMutual

• Category: Coding Practices [9]

• CWE subcategory: CWE-627 [5]

Description

In 3FMutual, the insurance-buying payments are distributed into four different categories: dividend

, IIP, Hakka, and the insurance pool. The first category dividend shares the payments among all
current buyers (and the portion of earlier buyers’ insurances are also reduced); the second category
IIP chooses to fund insurance improvement proposals (IIPs); the third category contributes back to

16/28 PeckShield Audit Report #: 2020-40

https://github.com/artistic709/3FMutual_audit/commit/0da1a7f1406e0397617b139c2ba93c14e9c31f7e

Confidential

the Hakka foundation; and the last category retains the majority of funds in insurance pool to fulfill
possible withdraws. Their shares are shown in the following table:

Table 3.1: The Distribution of Insurance-Buying Payments

Destination Percentage Note
Dividend 15% Distributed equally to all share holders

IIP 10% Distributed to fund Insurance Improvement Proposals (IIPs)
Pool 55% Distributed to the insurance pool

Hakka 20% Distributed to the Hakka foundation

The distribution logic is implemented with two helper routines, i.e., distributeEx() and distributeIn

(). The former handles the distribution to external stakeholders, including Hakka and IIPs while the
latter distributes to current buyers and the insurance pool. Notice that any dust resulted from
rounding issues is designed to be collected into the insurance pool.

420 /**
421 * @dev pay external stakeholder
422 */
423 f unc t i on d i s t r i b u t e E x (uint256 _eth , address payable _agent) i n t e r n a l {
424 // 20% to external
425 uint256 ex = _eth / 5 ;

427 // 10% to IIP
428 uint256 _i ip = _eth / 10 ;

430 i f (p l a y e r [_agent] . i sAgen t) {
431 uint256 r e fR a t e = p l a y e r [_agent] . l e v e l . add (6) ;
432 uint256 _ref = _eth . mul (r e fRa t e) / 100 ;
433 p l a y e r [_agent] . r e f = p l a y e r [_agent] . r e f . add (_ref) ;
434 p l a y e r [_agent] . accumulatedRef = p l a y e r [_agent] . accumulatedRef . add (_ref) ;
435 ex = ex . sub (_ref) ;
436 }

438 s endCont rac t (I IP , _ i i p) ;
439 s endCont rac t (hakka , ex) ;
440 }

442 /**
443 * @dev Distribute to internal
444 */
445 f unc t i on d i s t r i b u t e I n (address _buyer , uint256 _eth , uint256 _shares) i n t e r n a l {
446 // 15% to share holder
447 uint256 _div = _eth . mul (3) / 20 ;

449 // 55% to insurance pool
450 uint256 _pool = _eth . mul (55) / 100 ;

452 // distribute dividend share and collect dust

17/28 PeckShield Audit Report #: 2020-40

Confidential

453 uint256 _dust = updateMasks (_buyer , _div , _shares) ;

455 // add eth to pool
456 poo l = poo l . add (_dust) . add (_pool) ;

459 }

Listing 3.7: 3FMutual.sol

Our analysis shows that distributeIn() has properly collected the dust into the insurance pool

(line 456), but not distributeEx(). Lastly, we notice the above share percentages are not the same as
the official Medium article: https://medium.com/hakkafinance/3f-mutual-insurance-480bfb30a30d.
It is strongly suggested to keep them consistent.

Recommendation Revise the logic to collect the dust, if any, from distributeEx() into the
insurance pool as well.

Status This issue has been confirmed. Note that the dust might be less than 100 WEI. The
team considers it likely gas-inefficient to collect the dust and thus chooses to leave it as is.

3.5 Removal of Expired Insurance Units

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: 3FMutual

• Category: Time and State [8]

• CWE subcategory: CWE-362 [4]

Description

3FMutual maintains an internal record unitToExpire to keep track of the insurance units due at s
particular day. This number is increased (in buyCore()) when there is a new insurance payment and
it is supposed to be decreased when an earlier insurance is expired. This number is important as it
can be used to monitor the insurance dynamics.

In the following, we show the code snippet of updatePlayerUnit(). The logic updates the insurance
units of a buyer and will be invoked in two occasions: the first one is the new insurance payment
and the second one is when a beneficiary claims the owned share of the insurance pool.

Our analysis shows that the update logic can be improved. In particular, note that 3FMutual
specifies the maximum insurance period, i.e., maxInsurePeriod = 100. As a result, we only need to
maintain the insurance units due within this period (as insurance units outside this period are all
expired). By doing so, we can delete stale states and free unused storage space.

18/28 PeckShield Audit Report #: 2020-40

https://medium.com/hakkafinance/3f-mutual-insurance-480bfb30a30d

Confidential

404 /**
405 * @dev Update player ’s units of insurance
406 */
407 f unc t i on upda t eP l a y e rUn i t (address _player) i n t e r n a l {
408 uint256 _today = p l a y e r [_p layer] . p l y r L a s t S e e n ;
409 uint256 e x p i r e dUn i t = 0 ;
410 i f (_today != 0) {
411 whi le (_today < today) {
412 e x p i r e dUn i t = e x p i r e dUn i t . add (un i tToExp i r eP l a y e r [_p layer] [_today]) ;
413 _today += 1 ;
414 }
415 p l a y e r [_p layer] . u n i t s = p l a y e r [_p layer] . u n i t s . sub (e x p i r e dUn i t) ;
416 }
417 p l a y e r [_p layer] . p l y r L a s t S e e n = today ;
418 }

Listing 3.8: 3FMutual.sol

Recommendation Revise the updatePlayerUnit() logic to remove the unused unitToExpire

entries (line 413).
404 /**
405 * @dev Update player ’s units of insurance
406 */
407 f unc t i on upda t eP l a y e rUn i t (address _player) i n t e r n a l {
408 uint256 _today = p l a y e r [_p layer] . p l y r L a s t S e e n ;
409 uint256 e x p i r e dUn i t = 0 ;
410 i f (_today != 0) {
411 whi le (_today < today) {
412 e x p i r e dUn i t = e x p i r e dUn i t . add (un i tToExp i r eP l a y e r [_p layer] [_today]) ;
413 un i tToExp i r eP l a y e r [_p layer] [_today] = 0 ;
414 _today += 1 ;
415 }
416 p l a y e r [_p layer] . u n i t s = p l a y e r [_p layer] . u n i t s . sub (e x p i r e dUn i t) ;
417 }
418 p l a y e r [_p layer] . p l y r L a s t S e e n = today ;
419 }

Listing 3.9: 3FMutual.sol

Status This issue has been confirmed. The team takes the approach of directly zeroing out
unitToExpirePlayer[_player][_today]. Similarly, it is also applicable for unitToExpire[today] in tick().
The fix can be found in this commit: 0da1a7f1406e0397617b139c2ba93c14e9c31f7e.

3.6 Other Suggestions

Due to the fact that compiler upgrades might bring unexpected compatibility or inter-version consis-
tencies, we always suggest using fixed compiler version whenever possible. As an example, we highly

19/28 PeckShield Audit Report #: 2020-40

https://github.com/artistic709/3FMutual_audit/commit/0da1a7f1406e0397617b139c2ba93c14e9c31f7e

Confidential

encourage to explicitly indicate the Solidity compiler version, e.g., pragma solidity 0.6.10; instead
of pragma solidity ^0.6.10;.

Moreover, we strongly suggest not to use experimental Solidity features (e.g., pragma experimental

ABIEncoderV2) or third-party unaudited libraries. If necessary, refactor current code base to only use
stable features or trusted libraries.

Last but not least, it is always important to develop necessary risk control mechanisms and make
contingency plans, which may need to be exercised before the mainnet deployment. The risk-control
mechanisms need to kick in at the very moment when the contracts are being deployed in the mainnet.

20/28 PeckShield Audit Report #: 2020-40

Confidential

4 | Conclusion

In this audit, we thoroughly analyzed the 3FMutual design and implementation. The proposed
collective insurance system presents a unique innovation that can be used hedge possible risks against
current DeFi protocols. The current code base is well organized and those identified issues are
promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

21/28 PeckShield Audit Report #: 2020-40

Confidential

5 | Appendix

5.1 Basic Coding Bugs

5.1.1 Constructor Mismatch

• Description: Whether the contract name and its constructor are not identical to each other.

• Result: Not found

• Severity: Critical

5.1.2 Ownership Takeover

• Description: Whether the set owner function is not protected.

• Result: Not found

• Severity: Critical

5.1.3 Redundant Fallback Function

• Description: Whether the contract has a redundant fallback function.

• Result: Not found

• Severity: Critical

5.1.4 Overflows & Underflows

• Description: Whether the contract has general overflow or underflow vulnerabilities [14, 15,
16, 17, 19].

• Result: Not found

• Severity: Critical

22/28 PeckShield Audit Report #: 2020-40

Confidential

5.1.5 Reentrancy

• Description: Reentrancy [20] is an issue when code can call back into your contract and change
state, such as withdrawing ETHs.

• Result: Not found

• Severity: Critical

5.1.6 Money-Giving Bug

• Description: Whether the contract returns funds to an arbitrary address.

• Result: Not found

• Severity: High

5.1.7 Blackhole

• Description: Whether the contract locks ETH indefinitely: merely in without out.

• Result: Not found

• Severity: High

5.1.8 Unauthorized Self-Destruct

• Description: Whether the contract can be killed by any arbitrary address.

• Result: Not found

• Severity: Medium

5.1.9 Revert DoS

• Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

• Result: Not found

• Severity: Medium

23/28 PeckShield Audit Report #: 2020-40

Confidential

5.1.10 Unchecked External Call

• Description: Whether the contract has any external call without checking the return value.

• Result: Not found

• Severity: Medium

5.1.11 Gasless Send

• Description: Whether the contract is vulnerable to gasless send.

• Result: Not found

• Severity: Medium

5.1.12 Send Instead Of Transfer

• Description: Whether the contract uses send instead of transfer.

• Result: Not found

• Severity: Medium

5.1.13 Costly Loop

• Description: Whether the contract has any costly loop which may lead to Out-Of-Gas excep-
tion.

• Result: Not found

• Severity: Medium

5.1.14 (Unsafe) Use Of Untrusted Libraries

• Description: Whether the contract use any suspicious libraries.

• Result: Not found

• Severity: Medium

24/28 PeckShield Audit Report #: 2020-40

Confidential

5.1.15 (Unsafe) Use Of Predictable Variables

• Description: Whether the contract contains any randomness variable, but its value can be
predicated.

• Result: Not found

• Severity: Medium

5.1.16 Transaction Ordering Dependence

• Description: Whether the final state of the contract depends on the order of the transactions.

• Result: Not found

• Severity: Medium

5.1.17 Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

• Result: Not found

• Severity: Medium

5.2 Semantic Consistency Checks

• Description: Whether the semantic of the white paper is different from the implementation of
the contract.

• Result: Not found

• Severity: Critical

5.3 Additional Recommendations

5.3.1 Avoid Use of Variadic Byte Array

• Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of
space.

• Result: Not found

• Severity: Low

25/28 PeckShield Audit Report #: 2020-40

Confidential

5.3.2 Make Visibility Level Explicit

• Description: Assign explicit visibility specifiers for functions and state variables.

• Result: Not found

• Severity: Low

5.3.3 Make Type Inference Explicit

• Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce
the type, which is not safe especially in a loop.

• Result: Not found

• Severity: Low

5.3.4 Adhere To Function Declaration Strictly

• Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data
from calls() [1], which may break the the execution if the function implementation does NOT
follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens).

• Result: Not found

• Severity: Low

26/28 PeckShield Audit Report #: 2020-40

Confidential

References

[1] axic. Enforcing ABI length checks for return data from calls can be breaking. https://github.

com/ethereum/solidity/issues/4116.

[2] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[3] MITRE. CWE-282: Improper Ownership Management. https://cwe.mitre.org/data/definitions/

282.html.

[4] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[5] MITRE. CWE-627: Dynamic Variable Evaluation. https://cwe.mitre.org/data/definitions/627.

html.

[6] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[7] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[8] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[9] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

27/28 PeckShield Audit Report #: 2020-40

https://github.com/ethereum/solidity/issues/4116
https://github.com/ethereum/solidity/issues/4116
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/627.html
https://cwe.mitre.org/data/definitions/627.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html

Confidential

[10] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[11] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[12] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[13] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[14] PeckShield. ALERT: New batchOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-

10299). https://www.peckshield.com/2018/04/22/batchOverflow/.

[15] PeckShield. New burnOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

11239). https://www.peckshield.com/2018/05/18/burnOverflow/.

[16] PeckShield. New multiOverflow Bug Identified in Multiple ERC20 Smart Contracts (CVE-2018-

10706). https://www.peckshield.com/2018/05/10/multiOverflow/.

[17] PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts (CVE-2018-10376).

https://www.peckshield.com/2018/04/25/proxyOverflow/.

[18] PeckShield. PeckShield Inc. https://www.peckshield.com.

[19] PeckShield. Your Tokens Are Mine: A Suspicious Scam Token in A Top Exchange. https:

//www.peckshield.com/2018/04/28/transferFlaw/.

[20] Solidity. Warnings of Expressions and Control Structures. http://solidity.readthedocs.io/en/

develop/control-structures.html.

28/28 PeckShield Audit Report #: 2020-40

https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com/2018/04/22/batchOverflow/
https://www.peckshield.com/2018/05/18/burnOverflow/
https://www.peckshield.com/2018/05/10/multiOverflow/
https://www.peckshield.com/2018/04/25/proxyOverflow/
https://www.peckshield.com
https://www.peckshield.com/2018/04/28/transferFlaw/
https://www.peckshield.com/2018/04/28/transferFlaw/
http://solidity.readthedocs.io/en/develop/control-structures.html
http://solidity.readthedocs.io/en/develop/control-structures.html

	Introduction
	About 3FMutual
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Possible Integer Overflow in sqrt()
	Better Handling of Ownership Transfers
	Proper Asset Returns After Global Settlement
	Unhandled Dust in distributeEx()
	Removal of Expired Insurance Units
	Other Suggestions

	Conclusion
	Appendix
	Basic Coding Bugs
	Constructor Mismatch
	Ownership Takeover
	Redundant Fallback Function
	Overflows & Underflows
	Reentrancy
	Money-Giving Bug
	Blackhole
	Unauthorized Self-Destruct
	Revert DoS
	Unchecked External Call
	Gasless Send
	Send Instead Of Transfer
	Costly Loop
	(Unsafe) Use Of Untrusted Libraries
	(Unsafe) Use Of Predictable Variables
	Transaction Ordering Dependence
	Deprecated Uses

	Semantic Consistency Checks
	Additional Recommendations
	Avoid Use of Variadic Byte Array
	Make Visibility Level Explicit
	Make Type Inference Explicit
	Adhere To Function Declaration Strictly

	References

